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Abstract Mathematical model for evaluation of the multilayer heterogeneous biocat-
alytic system has been elaborated. The model consists of nonlinear system of partial
differential equations with initial values and boundary conditions. An algorithm for
computing the numerical solution of the mathematical model has been applied. Two
cases: when product diffuses out of the biosensor and when the outer membrane is
impermeable for product (product is trapped inside the biosensor) have been dealt with
by adjusting boundary conditions in the mathematical model. Profiles of the impact
of the substrate and product degradation rates on the biosensor response have been
constructed in both cases. Value of the degradation impact has been analyzed as a func-
tion of the outer membrane thickness. The initial substrate concentration also affects
influence of the degradation rates on the biosensor response. Analytical formulae,
defining approximate values of relationships between the degradation rates and the
outer membrane thickness or the initial substrate concentration, have been obtained.
These formulae can be employed for monitoring of the biosensor response.

Keywords Biosensor modeling · Enzyme electrode · Substrate degradation ·
Product degradation · Michaelis–Menten kinetics

1 Introduction

As an analytical instrument, biosensors have found wide application in medicine,
environment, and food-quality control [1,2]. Applications of biosensors in medicine
and industry require automated algorithms for monitoring biosensor action. Biosen-
sors constructed for practical applications usually contain several operational and
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protecting layers. Action of such biosensors is result of processes in each layer, inter-
acted in some complicated, nonlinear way. A number of attempts have been made to
propose mathematical models of the action of biosensors [3–8]. Mathematical mod-
eling of a multilayer heterogeneous analytical system should not be understood as an
outcome or summation of separate models, defined in corresponding layers. Mathe-
matical analysis must deal with entire multilayer biosensor as one inseparable system.
Proposed mathematical modeling of the biosensor action cannot describe full mecha-
nism of the biosensor action; however, it can define a range of importance of biosensor
parameters and their weights in the response formation.

Stability of the biosensor action presents a crucial quality of an analytical system. A
lot of external and internal factors can influence the response, and thereby the stability
of biosensor. In our previous paper [9], we have described mathematical model of the
electrochemical biosensor and have evaluated influence of thickness (of membranes
and enzymatic layer), diffusion parameters and pH on the response of the biosensor.
In this work we will describe impact of unstable substrate and product on the action of
the enzyme-based electrochemical biosensor, finding out how it depends on different
parameters of the biosensor. Very often substrate or product to be determined is con-
sumed by extraneous enzymes, microorganisms, spontaneous decomposition or other
side reactions. How it will influence on the response of the biosensor? How diffusion
parameters and thickness of biosensor membranes will affect this influence? These
dependences can be very useful for the constructors of reliable biosensors selecting
limiting thickness and diffusion parameters of separate layers of the biosensor target-
ing to minimize influence of the creep processes inside the biosensor. For estimation
of the influence of creep processes we are going to propose a mathematical algo-
rithm and biosensor response correcting formulae. Evaluation of creep processes in
biosensors will predict limiting conditions of the biosensor application and improve
the reliability of the biosensors that is absolutely necessary implementing biosensors
in the automated monitoring processes in industry, environment control and medicine.

Recent publications on biosensor research are mainly oriented on novel matri-
ces and more and more complicated construction of the biosensor. On the other
hand, a number of new useful tools are applied to verify parameters and sur-
face of the biosensors. For example, polyaniline/carbon nanotubes biosensor matrix
electrochemical parameters have been characterized by scanning electrochemical
microscopy [10]. Very often atomic force microscopy is used to characterize sur-
face of an electrode [11]. All of these tools can be applied to get additional informa-
tion to be included into the algorithm of the validation of biosensor action and can
be a source to complement elaborated formulae of the correction of the biosensor
response.

2 Model

2.1 Biosensor

As a model device, an electrochemical biosensor is dealt with (Fig. 1) [12]. The
biosensor consists of flat electrochemical electrode. On the surface of the electrode a

123



J Math Chem (2013) 51:2491–2502 2493

Fig. 1 General scheme of
electrochemical biosensor.
Mathematical variable x denotes
distance to the electrode

thin layer of enzyme is adsorbed or a layer of polymer containing immobilized enzyme
is deposited. Enzyme catalyzes conversion of substrate (S), which is our target, to
product (P), which is electrochemically active and can be detected on the electrode:

S
ENZYME−→ P

P
ELECTRODE−→ Q +/− ne e−(electrons).

Current of the electrode defines the response of the biosensor. The same principal
scheme can be applied to optical, electromagnetic and a number of other biosensors.

Enzyme containing layer is characterized by thickness (de) and diffusion coeffi-
cients for substrate (DSe) and product (DPe).

Enzymatic layer is covered by protecting inert membrane. This membrane can be
polymer membrane, possessing electrical charge, or neutral. In some cases the role
of this membrane can play thin layer of the unmixed solvent on the surface of the
enzyme containing layer. This outer membrane can be characterized by thickness
(dm) and diffusion coefficients for substrate (DSm ) and product (DPm ).

2.2 Mathematical model

For simplicity, action of the enzyme will be expressed as a Michaelis–Menten process.
It means that we accept conditions, when concentration of the product P inside the
enzyme containing membrane will be lower than concentration of the substrate S.
In the steady-state conditions this requirement can be realized when the rate of P
consumption on the electrode surface will be very fast.

2.2.1 Differential equations

Mathematically, both functions S = S(x, t) (substrate concentration) and P = P(x, t)
(product concentration) depend on coordinate variable x (distance to the biosensor
electrode; values 0 < x < de correspond to the enzyme layer while points inside the
membrane are defined by de < x < de + dm , see Fig. 1) and time variable t � 0.
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Let us assume, that the rate of the substrate and the product degradation is expressed
by a first order reaction with rate constants correspondingly C1 and C2. Then, for
0 < x < de + dm, t > 0, substrate and product kinetics is governed by nonlinear
reaction-diffusion equations

∂S

∂t
= ∂

∂x

(
DS(x)

∂S

∂x

)
− C1S − α(x)

Vmax S

KM + S
, (1)

∂ P

∂t
= ∂

∂x

(
DP (x)

∂ P

∂x

)
− C2 P + α(x)

Vmax S

KM + S
, (2)

here

DS(x) =
{

DSe , 0 < x � de,

DSm , de < x < de + dm,
(3)

DP (x) =
{

DPe , 0 < x � de,

DPm , de < x < de + dm,
(4)

α(x) =
{

1, 0 < x � de,

0, de < x < de + dm,
(5)

the parameter Vmax is the maximum rate of the reaction in the enzyme layer and KM

represents the Michaelis constant. Note that no enzymatic process takes place inside
the biosensor outer membrane, therefore, for de < x < de + dm Eqs. (1), (2) become
linear (α(x) ≡ 0).

2.2.2 Biosensor parameters

As a model electrode—glucose oxidase immobilized on Pt electrode has been applied.
Current of hydrogen peroxide electrochemical oxidation has been recorded. In this
case two-electron process (ne = 2) takes part. In numerical experiments activity of
immobilized glucose oxidase has been accepted to be Vmax = 0.3 mmol m−3 s−1,
that is about three times lower than activity of native enzyme, taking into account
that under immbolization process enzyme can loss 2/3 of the initial activity. KM of
glucose oxidase from Aspergillus niger is 0.23 mol m−3 and it has been assumed
that during the immobilization procedure this parameter is not influenced. Numerical
experiments have been performed at S0 = 0.07 mol m−3 (concentration of substrate in
buffer solution) as default. It is approximately 3.3 times lower than KM , i.e., biosensor
operates in linear diapason of substrate.

Layer of immobilized enzyme has been covered with cellulose or acetylated cel-
lulose film (outer membrane). It is typical biosensor reported in many papers. Such
biosensor has been designed and response curves have been experimentally recorded
(curves not shown).

Thickness of enzymatic layer (de) has been chosen 9 µm. Thickness of outer mem-
brane (dm) has been chosen 10 µm. Diffusion coefficients have been adjusted in accor-

123



J Math Chem (2013) 51:2491–2502 2495

dance with experimental biosensor response curves: DSe = 22 µm2 s−1, DPe =
20 µm2 s−1, DSm = 7 µm2 s−1, DPm = 6 µm2 s−1.

2.2.3 Initial values

Suppose, that we immerse the biosensor into buffer solution of substrate. The concen-
tration of substrate in the solution is S0, and remains stable during all process time.
At the beginning (t = 0) there is no substrate (S = 0), nor product (P = 0) inside
the enzymatic layer and the outer membrane:

S(x, 0) =
{

0, 0 � x < de + dm,

S0, x = de + dm,
(6)

P(x, 0) = 0, 0 � x � de + dm . (7)

2.2.4 Boundary conditions

Substrate is electrochemically inactive substance. The rate of electrochemical conver-
sion of product is very fast in compare with enzymatic reaction rate. Hence, on the
biosensor electrode (x = 0) boundary conditions apply (for t > 0):

∂S

∂x

∣∣∣∣
x=0

= 0, P(0, t) = 0, t > 0. (8)

Another boundary condition defines S values at the biosensor border (x = de +dm)

with buffer solution:

S (de+dm, t) = S0, t > 0. (9)

In this study we are going to investigate two different options. The first one assumes
situation when product diffuses out of the biosensor:

P (de+dm, t) = 0, t > 0. (10)

Alternatively, we can assume that the outer membrane is not permeable for product P.
In this case P is trapped inside the biosensor. However, substrate permeability is the
same as in the first case (10). Such a situation can happen when both the product and
the outer membrane are charged. This implies the boundary condition

∂ P

∂x

∣∣∣∣
x=de+dm

= 0, t > 0. (11)

2.3 Numerical algorithm

The mathematical model (1), (2) presents a nonlinear system of partial differen-
tial equations with the initial values (6), (7) and the boundary conditions (8)–(10)
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or (8), (9), (11). Analytical (exact) solutions to nonlinear differential problems can
be found in exceptional cases, only. In our case, since exact solution is unknown,
we have employed numerical modeling, based on finite difference approximation
[8,13].

A non-uniform (finer in the neighbourhoods of the juncture points x = 0, x =
de and x = de + dm ; in these bordering regions gradients of the concentration of
compounds under investigation are of largest magnitude, see Fig. 1) mesh Ωh has
been applied to partition the interval 0 � x � de + dm . Also, due to a sudden jump
(at x = de + dm) in the initial values (6), a semi-uniform (finer at the starting point
t = 0) mesh ωτ has been introduced for discretization of time variable t � 0.

The differential model has been approximated by the Crank–Nicolson method (a
second-order implicit finite difference scheme) [8,13]. For each discrete time layer
tk ∈ ωτ , the resulting nonlinear system of algebraic equations can be solved iterating
by the nonlinear part and using the Thomas algorithm (also known as the tridiagonal
matrix algorithm) [13] for the linear part.

Both meshes Ωh and ωτ can be characterized by values of their maximal steps
hmax and τmax , respectively. To find optimal setup (compromising accuracy and time
of computations), we have experimented with different choices of hmax and τmax . The
results of numerical experiments presented in this study have been obtained with the
values hmax = (de + dm)/442 and τmax = 0.01 s.

2.4 Biosensor response

As a response of the electrochemical biosensor, a steady-state diffusion current density
(I ) is considered:

I = lim
t→∞ i(t), i(t) = ne F DPe

∂ P

∂x

∣∣∣∣
x=0

, (12)

here i(t) denotes time-dependent current density, ne—number of electrons, partic-
ipating in electrochemical conversion of product molecule, and F is the Faraday
constant.

To estimate the value of I numerically we propose the following empirical
formula:

I ≈ i(t∗), t∗ = min
tk∈ωτ

⎛
⎝tk : i ′(tk)

max
tm�tk

i ′(tm)
< δ

⎞
⎠, (13)

with δ = 10−3 and requiring that i ′(tk) > 0, tk ∈ ωτ (that is, the current density must
be monotonically increasing, while saturating; otherwise I is undefined).

The saturation criterior (13) searches for the discrete time moment t∗ when slope
(derivative) of the increasing function i(t) decreases 1/δ =1,000 times, compared to
maximum slope.
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Derivatives in the expressions (12) and (13) have been computed from discrete
values of functions, employing parabolic interpolation.

3 Results and discussions

3.1 Degradation impact on biosensor response

Substrate and product degradation is controlled by the parameters C1 � 0 and C2 � 0
in Eqs. (1), (2). Hence, if all other coefficients in the mathematical model are fixed,
the biosensor response I appears as a function I = I (C1, C2). To reveal impact of
both quantities C1 and C2 on the response I, we have computed and portrayed (see
Fig. 2) the dependency of the relative decay

ΔI =
(

1 − I (C1, C2)

I (0, 0)

)
· 100 %. (14)

in two-dimensional coordinate plane (C1, C2).
In Fig. 2, points in:

– a white region correspond to the values of C1 and C2 such that 0 % � ΔI � 1 %;
– a criss-crossed region on a white background—such that 1 % � ΔI � 2 %;
– a light grey region—such that 2 % � ΔI � 3 %;
– a criss-crossed region on a light grey background—such that 3 % � ΔI � 4 %,

and so on.
It should be noted that ΔI isolines in (C1, C2) coordinate plane are nearly linear

(see Fig. 2).
This analysis allows us to conclude that the response of the biosensor is more

sensitive to the degradation process of the substrate (compared to the degrada-
tion of the product). For example, in the case of boundary conditions (8), (9),
(10) (Fig. 2, upper illustration), the value ΔI = 5 % may be reached by the
rate C1 = 3.22 s−1 · 10−3 (while C2 = 0 s−1 · 10−3) or by the rate C2 =
33.5 s−1 · 10−3 (while C1 = 0 s−1 · 10−3). That is, the same value of the response
decay would be achieved with the substrate degradation (assumed the product
does not degrade) rate approximately 10 times lesser than the product degradation
(assumed the substrate does not degrade) rate. 5 % fluctuations of the biosensor
response is usually acceptability limit in practical (food, environmental and medi-
cine) applications. We will use this limiting characteristics in further numerical
studies.

In the considered biosensor we have assumed that the outer membrane and the
electrochemically active product do not interact. However, in other types of biosensors
recordable product of the enzymatic process as well as of the outer membrane can be
charged. If the charges are opposite, it will lead to the extraction of the charged product
from the enzymatic layer and, thereby, the influence of the product degradation rate
becomes even less significant. If both charges are of the same sign, the product is
trapped inside the biosensor (the case of boundary conditions (8), (9), (11), see Fig. 2,
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Fig. 2 Relative decay ΔI of biosensor response versus degradation rates C1 and C2. Upper illustration: the
case when the product diffuses out of the biosensor [boundary conditions (8), (9), (10)]. Lower illustration:
the case when the outer membrane is impermeable for the product [boundary conditions (8), (9), (11)]

lower illustration), the impact of the substrate degradation is the same as in the previous
case, but the biosensor becomes more sensitive to the rate of the product degradation.
In this case, the value ΔI = 5 % may be reached by the rate C2 = 15.9 s−1 · 10−3.
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Fig. 3 Dependency of the area Ψ (displayed in dark gray background) on the outer membrane thickness
dm . The case when the product diffuses out of the biosensor [boundary conditions (8), (9), (10)]

3.2 Influence of outer membrane thickness

In the analyzed model of the biosensor we have assumed that the thickness of the outer
membrane is constant. However, in real situations this parameter may vary. Cells and
proteins from biological media can adsorb on surfaces of the outer membrane, “gluing”
the outer membrane, hence increasing the thickness of the outer membrane. Also, the
thickness of the outer membrane can be affected by pressure fluctuations of the bulk. pH
fluctuations can impact the swelling properties etc. How would the varying thickness
of the outer membrane influence the impact of the degradation process to the biosensor
response?

Following the definition (14) and Fig. 2, let us define the area in (C1, C2) coordinate
plane, limited by ΔI 5 % isoline:

Ψ = {(C1 � 0, C2 � 0) : ΔI � 5 %} . (15)

The area Ψ (displayed in dark gray background) and its dependency on the outer
membrane thickness dm is presented in Fig. 3. It should be pointed out that when the
thickness of outer membrane increases, the influence of the degradation processes
increases as well.

3.2.1 Analytical formulae of ΔI = 5 %

Also, it is worth mentioning that for all values 6 µm � dm � 14µm, and the values
of all other model coefficients listed in Sect. 2.2.2, the ΔI 5 % isoline (defined by the
equation ΔI = 5 %) remains nearly linear. By employing least squares fitting, we
have obtained the analytical approximation of the curve ΔI = 5 %:
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Fig. 4 Dependency of the area Ψ (displayed in dark gray background) on the substrate concentration S0
in buffer solution. The case when the product diffuses out of the biosensor [boundary conditions (8), (9),
(10)]

C2 = K (dm) C1 + M(dm) , C1 � 0, C2 � 0, (16)

K (dm) = −0.792
dm

µm
− 2.49, (17)

M(dm) =
−0.583

dm

µm
+ 28.3 + 110µm

dm

103 s−1. (18)

3.3 Influence of substrate concentration

Analogously as in Sect. 3.2, we have analyzed the impact of different values of the
substrate concentration S0 (in buffer solution) on the area Ψ [defined by (15)]. Results
(with fixed values of all other model coefficients, except S0) are presented in Fig. 4.

3.3.1 Analytical formulae of ΔI = 5 %

Least squares fitting yields the analytical formulae of the curve ΔI = 5 %:

C2 = k(S0) C1 + m(S0) , C1 � 0, C2 � 0, (19)

k(S0) = − 33.5

10.5 S0 mol−1 m3 + 2.49
, (20)

m(S0) ≡ 0.0335 s−1. (21)

As can be expected, with increase of substrate concentration, the substrate degra-
dation rate (needed for the limiting 5 % level) increases linearly (see Fig. 4).

Analogous (to Sects. 3.2 and 3.3) analysis can be done for the case with the outer
membrane impermeable for product [boundary conditions (8), (9), (11)].
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The expressions (16)–(18) and (19)–(21) define relationships between the product
and substrate degradation rates and fundamental parameters of detectoring system
like the outer membrane thickness, the input parameter (the substrate concentration).
These findings can be included into a biosensor monitoring algorithm, as correction
of allowed limit of the biosensor response.

Also we have analyzed situation with different Vmax . This analysis shows that
activity of the biocatalyser does not influence the impact of the degradation processes
on the biosensor response.

4 Conclusions

When the product diffuses out of the biosensor, the response is more sensitive to the
degradation process of the substrate (compared to the degradation of the product).
That is, the same value of the response decay would be achieved with the substrate
degradation (assumed the product does not degrade) rate approximately 10 times lesser
than the product degradation.

If the outer membrane is impermeable for the product (the product is trapped inside
the biosensor), the impact of the substrate degradation is the same as in the previous
case, but the biosensor becomes more sensitive to the rate of the product degradation.

When the thickness of the outer membrane increases, the degradation processes
become more influential. With increase of substrate concentration, the substrate degra-
dation rate (needed for the same value of the response decay) increases linearly. The
activity of the biocatalyser does not influence the impact of the degradation processes
on the biosensor response.

Analytical formulae, relating the degradation rates and the outer membrane thick-
ness or the initial substrate concentration have been obtained. These findings can be
included into a biosensor monitoring algorithm, as correction of allowed limit of the
biosensor response.
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